Difference between revisions of "Cluster:Compute nodes"
Jump to navigation
Jump to search
(→List of compute nodes) |
m (→List of compute nodes) |
||
| Line 16: | Line 16: | ||
| nVidia DGX-2 | | nVidia DGX-2 | ||
| 16 x V100 @ 32 GB | | 16 x V100 @ 32 GB | ||
| − | | gpumem-32 | + | | gpumem-32, nvidia-v100, nvidia-compute-capability-sm80 |
| − | | gpumem-32 | + | | gpumem-32 |
|- | |- | ||
! scope="row"| Glasya | ! scope="row"| Glasya | ||
| Line 23: | Line 23: | ||
| Dual Xeon Rack | | Dual Xeon Rack | ||
| 4 x Titan RTX @ 24 GB | | 4 x Titan RTX @ 24 GB | ||
| + | | gpumem-24, nvidia-rtx, nvidia-compute-capability-sm80 | ||
| + | | gpumem-24 | ||
|- | |- | ||
! scope="row"| Belial | ! scope="row"| Belial | ||
| Line 28: | Line 30: | ||
| Supermicro | | Supermicro | ||
| 8 x Quadro RTX 6000 @ 24 GB | | 8 x Quadro RTX 6000 @ 24 GB | ||
| + | | gpumem-24, nvidia-rtx, nvidia-compute-capability-sm75 | ||
| + | | gpumem-24 | ||
|- | |- | ||
! scope="row"| Fierna | ! scope="row"| Fierna | ||
| Line 33: | Line 37: | ||
| Supermicro | | Supermicro | ||
| 8 x Quadro RTX 6000 @ 24 GB | | 8 x Quadro RTX 6000 @ 24 GB | ||
| + | | gpumem-24, nvidia-rtx, nvidia-compute-capability-sm75 | ||
| + | | gpumem-24 | ||
|- | |- | ||
! scope="row"| Zariel | ! scope="row"| Zariel | ||
| Line 38: | Line 44: | ||
| nVidia DGX A100 | | nVidia DGX A100 | ||
| 8 x A100 @ 40 GB | | 8 x A100 @ 40 GB | ||
| + | | gpumem-40, nvidia-a100, nvidia-compute-capability-sm80 | ||
| + | | gpumem-40 | ||
|- | |- | ||
! scope="row"| Tiamat | ! scope="row"| Tiamat | ||
| Line 43: | Line 51: | ||
| Supermicro | | Supermicro | ||
| 4 x A100 @ 40 GB | | 4 x A100 @ 40 GB | ||
| + | | gpumem-40, nvidia-a100, nvidia-compute-capability-sm80 | ||
| + | | gpumem-40 | ||
|- | |- | ||
! scope="row"| Asmodeus | ! scope="row"| Asmodeus | ||
| Line 48: | Line 58: | ||
| Supermicro | | Supermicro | ||
| 4 x A100 HGX 320 GB, subdivided in 16 GPUs @ 20 GB | | 4 x A100 HGX 320 GB, subdivided in 16 GPUs @ 20 GB | ||
| + | | gpumem-20, nvidia-a100, nvidia-compute-capability-sm80 | ||
| + | | | ||
|- | |- | ||
! scope="row"| Demogorgon | ! scope="row"| Demogorgon | ||
| Line 53: | Line 65: | ||
| Delta | | Delta | ||
| 8 x A40 @ 40 GB | | 8 x A40 @ 40 GB | ||
| + | | gpumem-40, nvidia-a40, nvidia-compute-capability-sm80 | ||
| + | | gpumem-40 | ||
|- | |- | ||
|} | |} | ||
Revision as of 17:47, 27 November 2021
List of compute nodes
The following nodes are currently part of the cluster. Note that the master node is CPU only and not used for computations, as it hosts all CCU infrastructure (among a few other things).
| CCU name | Access | Platform | GPUs | Labels | Taints |
|---|---|---|---|---|---|
| Vecna | exc-cb, inf | nVidia DGX-2 | 16 x V100 @ 32 GB | gpumem-32, nvidia-v100, nvidia-compute-capability-sm80 | gpumem-32 |
| Glasya | trr161 | Dual Xeon Rack | 4 x Titan RTX @ 24 GB | gpumem-24, nvidia-rtx, nvidia-compute-capability-sm80 | gpumem-24 |
| Belial | exc-cb | Supermicro | 8 x Quadro RTX 6000 @ 24 GB | gpumem-24, nvidia-rtx, nvidia-compute-capability-sm75 | gpumem-24 |
| Fierna | exc-cb | Supermicro | 8 x Quadro RTX 6000 @ 24 GB | gpumem-24, nvidia-rtx, nvidia-compute-capability-sm75 | gpumem-24 |
| Zariel | trr161 | nVidia DGX A100 | 8 x A100 @ 40 GB | gpumem-40, nvidia-a100, nvidia-compute-capability-sm80 | gpumem-40 |
| Tiamat | exc-cb | Supermicro | 4 x A100 @ 40 GB | gpumem-40, nvidia-a100, nvidia-compute-capability-sm80 | gpumem-40 |
| Asmodeus | cvia | Supermicro | 4 x A100 HGX 320 GB, subdivided in 16 GPUs @ 20 GB | gpumem-20, nvidia-a100, nvidia-compute-capability-sm80 | |
| Demogorgon | exc-cb | Delta | 8 x A40 @ 40 GB | gpumem-40, nvidia-a40, nvidia-compute-capability-sm80 | gpumem-40 |
The CCU name is the internal name used in the Kubernetes cluster, as well as the configured hostname of the node. Nodes are not accessible from the outside world, you have to access the cluster via kubectl through the API-server.
In the column "Access" you can find which Kubernetes user groups can access this node.
| Group | Desciption |
|---|---|
| exc-cb | Centre for the Advanced Study of Collective Behaviour |
| trr161 | SFB Transregio 161 "Quantitative Methods for Visual Computing" |
| inf | Department of Computer Science |
| cvia | Computer Vision and Image Analysis Group |