Changes

Jump to navigation Jump to search

CCU:GPU Cluster

908 bytes added, 6 years ago
no edit summary
but there are template projects and scripts provided so that you can get started with minimal knowledge about the
technical background of the GPU cluster.
 
The GPU cluster is based on Kubernetes, which is a framework to deploy so-called Docker containers to different compute nodes. You can think of a Docker container as a wrapper for your machine learning application, which contains all necessary code and all the libraries it depends on (yes, also the ones from the basic OS). In essence, it is an independent object which can be deployed and run on an arbitrary computer on which the docker infrastructure is installed.
 
This means for you that you have to be able to take the necessary steps to wrap your own code into a container. All this is covered in an easy, introductory way in the short tutorials below, which should be sufficient to get you started. At some point, you might want to learn about docker in a more in-depth manner, for this, I refer you to the excellent tutorials available elsewhere, some of which are linked [[CCU:tutorials|here]].
 

Navigation menu